

Beyond SAM: Towards More Efficient, Unified, General Views of SAM

Xiangtai Li

2024-3-20

https://lxtgh.github.io/

Overview

- 1, SAM overview.
- 2, Edge-SAM.
- 3, Open-Vocabulary SAM.
- 4, OMG-Seg.
- 5, Close Related Works and Summary.

Outline

- 1, SAM overview.
- 2, Edge-SAM.
- 3, Open-Vocabulary SAM.
- 4, OMG-Seg.
- 5, Close Related Works and Summary.

- 1+ billion masks
- 11 million images
- SAM 1B dataset.

Overall Architecture of SAM

SAM - Prompt-based segmentation model.

Strong Points:

- An easy to use interactive segmentation tool.
- Generalization ability with various visual prompts.
- SAM-1B dataset can used for community.
- Multi-granularity masks.

Problems:

- No semantic information.
- Not efficient and cannot used on device.
- No temporal association.
- Scale variance problem.

Outline

- 1, SAM overview.
- 2, Edge-SAM.
- 3, Open-Vocabulary SAM.
- 4, OMG-Seg.
- 5, Close Related Works and Summary.

Current solutions for efficient SAM models:

1, Training a interactive model using SAM-1B data. Eg: FastSAM

2, Distillation on the smaller encoder. Eg: MobileSAM

3, Combine 1 and 2 together. Eg: Efficient-SAM

FastSAM

YOLACT + Rule-Based Selection Train on 10% SA-1B

Feature distillation on SAM encoder. (Mobile-SAM)

Knowledge Guided Mask Image Modeling Pre-train and then finetuning. (Efficient-SAM)

Our Goals:

1, Faster and Accurate. (real-time)

2, Running on real device. Such as iPhone

3, Explore interactive property of SAM decoder.

The first stage: Feature Distillation

$$L_p = \mathsf{MSE}(T_{enc}(I), S_{enc}(I))$$

Choose lightweight backbone

(c) Choice of the backbone. We apply encoderonly KD for this ablation.

Method	Res. Align	Type	\mathbf{Box}	Center	FPS
TinyViT-5M EfficientViT-B1 RepViT-M1	Remove Downsample	ViT Hybrid CNN	82.0 81.6 82.1	64.6 63.7 64.9	$103.5 \\ 117.0 \\ 155.7$
TinyViT-5M EfficientViT-B1 RepViT-M1	FPN	ViT Hybrid CNN	$81.6 \\ 80.7 \\ 82.0$	$63.7 \\ 60.9 \\ 64.6$	114.2 159.9 164.3

Add prompts during the distillation.

<	Positive Point
۲	Negative Point
$\mathbf{)}$	Teacher Mask
$\mathbf{)}$	Student Mask

```
Algorithm 1: Prompt-In-the-Loop Distillation
 T_{enc}, S_{enc} \leftarrow \text{SAM} / \text{EdgeSAM encoder};
 T_{dec} \leftarrow \text{SAM decoder};
 S_{dec} \leftarrow \text{EdgeSAM} decoder initialized w/ T_{dec};
 m, \mathbf{c} \leftarrow \text{shared mask} / \text{IoU tokens};
 \mathcal{I}, \mathcal{P} \leftarrow images and prompts for training;
 N, M \leftarrow training steps, prompt sampling loops;
 for i = 1, 2, ..., N do
       f_t, f_s \leftarrow T_{enc}(\mathcal{I}_i), S_{enc}(\mathcal{I}_i);
       p \leftarrow select the box or point prompt in \mathcal{P}_i;
       m_t, m_s \leftarrow T_{dec}(f_t, p, m, \mathbf{c}), S_{dec}(f_s, p, m, \mathbf{c});
      L \leftarrow L_{\text{mask}}(m_t, m_s);
       for j = 1, 2, ..., M do
           \hat{p} \leftarrow \text{sample\_in\_disagree}(m_t, m_s);
           p \leftarrow \hat{p} appends to p;
           m_t, m_s \leftarrow
              T_{dec}(f_t, p, m, \mathbf{c}), S_{dec}(f_s, p, m, \mathbf{c});
            L \leftarrow L + L_{\text{mask}}(m_t, m_s);
       end
       S_{enc}, S_{dec} \leftarrow \text{SGD model update};
 end
```


Table 4: Performance with boxes from an external object detector as prompts. We report the mask mAP and boundary IoU on the COCO dataset. The box mAPs of Detic and ViTDet-H are 47.4 and 58.7 respectively.

Method	AP	AP_S	${ m Detic} { m AP}_{ m M}$	AP_{L}	BIoU	AP	ViTI AP_S	${ m Det-H} { m AP_M}$	AP_{L}	Train Set	\mathbf{FPS}
SAM	38.8	26.9	44.1	50.3	26.8	46.1	33.6	51.9	57.7	SA-1B	4.3
FastSAM	-	-	-	-	-	37.9	23.9	43.4	50.0	2% SA-1B	$<\!\!103.5$
MobileSAM	33.1	21.7	37.8	44.8	20.2	39.4	26.9	44.4	52.2	1% SA-1B	103.5
EfficientSAM-Ti	-	-	-	-	-	42.3	26.7	46.2	57.4	SA-1B+IN	103.5
EdgeSAM	$\left \underline{35.2} \right $	$\underline{23.5}$	<u>40.3</u>	<u>46.6</u>	<u>22.5</u>	42.2	<u>29.6</u>	<u>47.6</u>	53.9	1% SA-1B	164.3

Table 2: Performance with GT boxes as prompts. We report the mIoU across all instances in the test set. +1 pt. denotes appending an additional refinement point as the prompt. Bold marks the best while <u>underline</u> marks the second best. Since EfficientSAM is trained on the entire SA-1B dataset, we do not evaluate it on SA-1K.

Method		SA-1k	Σ LΩ L		COCC)		LVIS	
	Box	+1 pt.	+2 pt.	Box	+1 pt.	+2 pt.	Box	+1 pt.	+2 pt.
SAM	86.7	86.7	87.1	77.3	77.7	<u>78.1</u>	77.8	78.3	78.5
MobileSAM	82.0	82.4	82.7	74.4	74.8	75.1	73.1	73.7	74.0
EfficientSAM-Ti	-	-	-	75.2	76.0	76.6	74.6	75.2	75.1
$\mathbf{EdgeSAM}$	<u>83.0</u>	83.7	<u>84.1</u>	<u>76.7</u>	78.1	79.0	76.2	77.3	<u>78.0</u>

Table 3: Performance with center points as prompts. Similar to Tab. 2 but using the mask center point as the initial prompt.

Method	Center	${f SA-1K}\ +1 { m pt.}$	$+2 { m pt.}$	Center	$\begin{array}{c} { m COCO} \\ +1 { m pt.} \end{array}$	$+2 { m pt.}$	Center	$\begin{array}{c} { m LVIS} \\ +1 { m pt.} \end{array}$	+2 pt.
SAM	76.5	83.4	85.1	53.6	67.4	71.7	60.5	68.1	70.7
MobileSAM	64.6	73.4	76.2	50.9	<u>63.0</u>	66.8	52.1	59.9	63.0
EfficientSAM-Ti	-	-	-	49.8	60.5	65.7	56.4	62.5	65.4
$\mathbf{EdgeSAM}$	<u>67.5</u>	<u>76.1</u>	<u>79.0</u>	48.0	61.8	<u>68.7</u>	53.7	$\underline{63.4}$	67.7
EdgeSAM-RPN				54.3					

Without our KD

With our KD

Without our KD

With our KD

Without our KD

With our KD

Outline

- 1, SAM overview.
- 2, Edge-SAM.
- 3, Open-Vocabulary SAM.
- 4, OMG-Seg.
- 5, Close Related Works and Summary.

CLIP: Learning Transferable Visual Models From Natural Language Supervision

SAM cannot recognize and label selected objects!

One Simple Solution: Combine VLMs, such as CLIP.

valid mask

(a) Feature Cropping Baseline

CLIP

Problems:

Problem-1: Two independent backbones. (Need extra costs).

Problem-2: Two different knowledge distribution. (CLIP vs SAM)

Problem-3: Smaller object recognition.

Problem-4: How to scale up the data using combined SAM and CLIP models?

(a) Feature Cropping Baseline

One visual backbone, using CLIP ->Problem-1

SAM2CLIP: Transfer SAM Knowledge to CLIP

We explore one transformer architecture for adapting SAM's knowledge to CLIP. -> Problem-2

CLIP2SAM: Transfer CLIP Knowledge to SAM decoder.

We explore combined CLIP features and RoI-Align operation. Problem-3.

We explore merged dataset co-training: imagenet,coco,lvis,v3det. Problem-4.

Open-Vocabulary SAM performance

Method	Venue	Const Base	trained Novel	Generalized Base Novel All			
XPM [24]	CVPR'22	42.4	24.0	41.5	21.6	36.3	
MaskCLIP [13]	ICML'23	42.8	23.2	42.6	21.7	37.2	
MasQCLIP [74]	ICCV'23	40.9	30.1	40.7	28.4	37.5	
Open-Vocabulary SAM	(Ours)	41.7	37.5	39.3	39.8	39.4	

Method	Detectors	mAP	AP50	AP75	APS	APM	APL	#Params	FLOPs
SAM-Huge	Faster-RCNN (R50)	35.6	54.9	38.4	17.2	39.1	51.4	641M	3,001G
SAM-Huge (finetuned)	Faster-RCNN (R50)	35.8	55.0	38.4	16.5	38.6	53.0	641M	3,001G
Open-Vocabulary SAM	Faster-RCNN (R50)	35.8	55.6	38.3	16.0	38.9	53.1	304M	1,180G
SAM-Huge	Detic (swin-base)	36.4	57.1	39.4	21.4	40.8	54.6	641M	3,001G
SAM-Huge (finetuned)	Detic (swin-base)	36.8	57.4	39.8	20.8	40.6	55.1	641M	3,001G
Open-Vocabulary SAM	Detic (swin-base)	36.7	57.2	39.7	20.7	40.8	54.9	304M	1,180G
SAM-Huge	ViTDet (Huge)	46.3	72.0	49.8	25.2	45.5	59.6	641M	3,001G
SAM-Huge (finetuned)	ViTDet (Huge)	46.5	72.3	50.3	25.2	45.8	60.1	641M	3,001G
Open-Vocabulary SAM	ViTDet (Huge)	48.8	73.8	52.9	24.8	46.3	64.2	304M	1,180G

OVSAM vs Open-Vocabulary Segmentation Methods

OVSAM	vs SAM
-------	--------

Datasets	Accuracy (COCO)	#vocaulary	#images
LVIS	83.1	1,203	99K
V3Det	78.7	13,204	183K
I-21k	44.5	19,167	13M
V3Det + LVIS	82.7	13,844	282K
V3Det + LVIS + I-21k	83.3	25,898	13M
V3Det + LVIS + I-21k + Object365	83.0	25,970	15M

Scale-up Training

Open-Vocabulary SAM

Outline

- 1, SAM overview.
- 2, Edge-SAM.
- 3, Open-Vocabulary SAM.
- 4, OMG-Seg.

5, Close Related Works and Summary.

OMG-Seg: Is One Model Good Enough For All Segmentation?

CVPR-2024

<u>Xiangtai Li</u> · <u>Haobo Yuan</u> . <u>Wei Li</u> . <u>Henghui Ding</u> · <u>Size Wu</u> · <u>Wenwei Zhang</u> · <u>Yining Li</u> . <u>Kai Chen</u> . <u>Chen Change Loy*</u>

S-Lab, MMlab@NTU, Shanghai Al Laboratory

A Baseline of One Model For Segmentation Tasks.

Single Expert Models

PPM: PSPNet (CVPR-2017)

 \longrightarrow Conv \rightarrow \bigcirc

PPM in PSPNet

ASPP: Deeplab v3+ (ECCV-2018)

Panoptic Segmentation-CVPR-2019

Figure 1. The Mask R-CNN framework for instance segmentation.

Mask R-CNN-ICCV-2017

CondInst-ECCV-2020

Unified Models For Image and Video Segmentation

Mask2Former-CVPR-2022

Max-Deeplab-CVPR-2021

Tube-Link-ICCV-2023

Partially Unified Models

X-Decoder-CVPR-2023

Figure 2. Overall pipeline for our model. It consists of an image encoder, a text encoder and our own designed X-Decoder.

Figure 1. With one suite of parameters, X-Decoder after pretraining supports all types of image segmentation tasks ranging from open-vocabulary instance/semantic/panoptic segmentation to referring segmentation, and vision-language tasks including image-text retrieval, and image captioning (labeled in green boxes). It further empowers composite tasks like referring captioning using X-Decoder itself and image editing that combines with generative models such as Stable Diffusion [66] (labeled in yellow boxes).

Partially Unified Models

Semantic-SAM, arxiv-23-7-10

Figure 3: Semantic-SAM is a universal segmentation framework that can take multiple types of segmentation data including generic, part, and class-agnostic segmentation data. The Vision Encoder is used to extract image features. The mask decoder can do both generic segmentation and promptable segmentation with various types of prompts. For point and box, we input them via anchor boxes to the mask decoder. Since there is an ambiguity of granularity for a point input, we duplicate each point 6 times and give them different levels of embeddings. The output masks of point prompts match with multiple GT masks of different granularities.

Partially Unified Models

Figure 1. Predicted results from a jointly trained TarViS model for four different video segmentation tasks.

TarViS-CVPR-2023

Figure 2. TarViS Architecture. Segmentation targets for different tasks are represented by a set of abstract target queries Q_{in} . The core network (in green) is agnostic to the task definitions. The inner product between the output queries Q_{out} and video feature F_4 yields segmentation masks as required by the task.

General Visual Models

Images Speak in Images: A Generalist Painter for In-Context Visual Learning, CVPR-2023

Figure 2. The training pipeline of the masked image modeling (MIM) framework.

Summary

1, Visual segmentation problems are traditionally tackled by distinct or partially unified models.

2, Unified Image / Video / Open-Vocabulary / Interactive Models are proposed, most of them are foundation models. No works combine them all.

3, The performance gaps are large between vision generalist and segmentation experts.

4, Is there one model to solve all these task with extremely parameter saving and handcraft saving?

OMG-Seg is all your need!!

The OMG-Seg logo is generated by DALLE-3.

Key Features:

- One shared model for all segmentation.
- Good enough performance on various segmentation tasks and datasets.
- Enable task association and sharing.
- Enable open-vocabulary and interactive segmentation.
- The first work to unify image, video, openvocabulary and interactive segmentation in one share model.

How Do we perform Unified Task Representation

1, Image Segmentation:

2, Video Segmentation:

2, video Segmentation.

3, Interactive Segmentation:.

4, Open-Vocabulary and Multi-Dataset Segmentation:

1, Decoder -> Cross Attention.

2, Query Representation -> Each Entity.

3, Classification -> Mask Classification.

4, Instance Matching -> Match Tube/Stuff/Thing Masks.

Unified Task Representation

- 1, Image Segmentation: one query -> one mask and one label.
- 2, Video Segmentation: one query -> one tube mask, one tube label and one ID.
- 3, Interactive Segmentation: one visual prompt -> one query -> one mask.

4, Open-Vocabulary and Multi-Dataset Segmentation: replace the class label into CLIP text embedding and adopt frozen CLIP visual backbone.

Put them all together in one model!

Table 1. Setting Comparison For Different Models. We include several representative methods here. Our proposed OMG-Seg can perform various segmentation tasks in one model.

Methods	SS	IS	PS	VSS	VIS	VPS	VOS	Open-Set	Multi dataset training	Interactive	Shared model
DeeplabV3+[11]	\checkmark										
MaskRCNN [30]		\checkmark									
PanopticFPN [36]			\checkmark								
DERT [6]			\checkmark								
DetectorRS [64]		\checkmark	\checkmark								
TCB [58]				\checkmark							
VisTR [78]					\checkmark						
VPSNet [34]						\checkmark					
STM [61]							\checkmark				
K-Net [97]	\checkmark	\checkmark	\checkmark								
Mask2Former [18]	\checkmark	\checkmark	\checkmark								
Video K-Net [51]				\checkmark	\checkmark	\checkmark					
Tube-Link [49]				\checkmark	\checkmark	\checkmark					
TubeFormer [35]				\checkmark	\checkmark	\checkmark					
OneFormer [33]	\checkmark	\checkmark	\checkmark								\checkmark
TarViS [2]				\checkmark	\checkmark	\checkmark	\checkmark				\checkmark
MSeg [40]	\checkmark								\checkmark		\checkmark
UNINEXT [89]		\checkmark			\checkmark		\checkmark		\checkmark		
OpenSeg [26]	\checkmark							\checkmark	\checkmark		\checkmark
SAM [38]								\checkmark		\checkmark	
Semantic-SAM [42]	\checkmark	\checkmark	\checkmark					\checkmark	\checkmark	\checkmark	\checkmark
SEEM [104]	\checkmark	\checkmark	\checkmark					\checkmark	\checkmark	\checkmark	\checkmark
OPSNet [14]			\checkmark					\checkmark			
FreeSeg [65]	\checkmark	\checkmark	\checkmark					\checkmark			\checkmark
OMG-Seg	\checkmark	\checkmark	\checkmark								

1, Simple Encoder and Pixel Decoder as Mask2Former.

- 2, Adopt the frozen CLIP backbone.
- 3, Location Queries and Semantic Queries are used as input of shared decoder.
- 4, The Decoder decode image masks, tube masks, binary masks, and image labels according to the queries' tasks.

5, The CLIP text embeddings are used to supervise the classification to avoid label conflicts.

6, For open-vocabulary inference, we also adopt fused CLIP visual features score and learned text score to achieve better zero-shot classification.

7, For video instance, we adopt query embedding itself for association.

8, For interactive mode, we directly output binary mask as SAM.

Training:

We jointly co-training the image/video data in one shot. Two mages are treated as one clips.

Inference:

We inference each task and datasets according to different prompts and class embeddings.

Table 2. Experiment results of OMG-Seg on image, video, open-vocabulary, and SAM-like settings. * denotes models are pre-trained on the Object365 dataset [68]. We only list representative methods due to the page limit. Refer to the supplementary material for more methods. Our results are the averaged results of five different experiments.

Madaala	Dealthana	COCO-PS	Cityscapes-PS	COCO-IS	VIPSeg-VPS	YT-VIS-19	YT-VIS-21-OV	ADE-OV	DAVIS-17-VOS-OV	COCO-SAM	Share Model
Methods	Backbone	PQ	PQ	mAP	VPQ	mAP	mAP	PQ	J&F	mIoU	-
DetectorRS [64]	ResNet50	8 - 8	2.4.2	42.1	1-1	-	-	-	1-11	-	-
HTC [8]	ResNet50	-	-	38.4	-	-	-	-	-	-	-
STM [62]	ResNet101	81 <u>2</u> 15	1211	-		2	-	-	79.2	20	-
K-Net [97]	ResNet50	47.1		38.6	-	-	-	-		-	-
Mask2Former [18]	ResNet50	51.9	62.1	43.7	-	-	-	-		-	-
Mask2Former [18]	Swin-Large	57.8	66.6	50.1	-	-	-	-		-	-
k-Max Deeplab [92]	ResNet50	53.0	64.3	-	-	-	-	-	121	-	-
k-Max Deeplab [92]	ConvNeXt-Large	58.1	68.4	2	121	-	-	-	121	-	-
SeqFormer [80]	ResNet50		-	-	1.0	47.4	-	1.7.1	1.00	-	-
IDOL [83]	Swin-Large	-	-	-	-	64.3	-	-		-	-
MinVIS [31]	Swin-Large	-		-	-	61.6	-	-		-	-
Video K-Net [51]	ResNet50	-	-	-	26.1	40.5	-	_	121	-	-
Tube-Link [49]	ResNet50	-	-	-	41.2	52.8	-	-	-	-	-
Tube-Link [49]	Swin-base	-	-	-	54.5	-	-	-	-	-	-
OneFormer [33]	Swin-Large	58.0	67.2	49.2	-	-	-	-		-	~
TarViS [2]	Swin-Large	-	1.00	-	48.0	-	-	-	1.00	-	~
fc-clip [91]	ConvNeXt-Large	54.4	-	44.6		-	-	26.8	12.5	-	~
ODISE [86]	ViT-Large	55.4	-	46.0	-	-	-	22.6	-	-	~
DaTaSeg [27]	ViT-L	53.5		-	-	-	-		170	-	\checkmark
X-Decoder [103]	DaViT	56.9		46.7	-	-	-	21.8	-	-	~
SEEM [104] *	DaViT	57.5	-	47.7	-	-	-	-	58.9	83.4	~
UNINEXT [89] *	ConvNeXt-L	_	-	49.6	-	64.3	-	-	77.2	-	~
HIPIE [75] *	ViT-H	58.0	-	51.9	-	-	-	20.6	-	-	\checkmark
OpenSeeD [96] *	Swin-L	59.5		53.2	-	-		19.7	-	-	\checkmark
SAM [38]	ViT-H	-		-	-	-	-	-		55.3	\checkmark
Semantic-SAM [42]	Swin-T	55.2	-	47.4	-	-	-	-	141	53.0	~
Painter [76]	ViT-L	43.4	-	-		-	-	-	-	-	~
OMG-Seg	ConvNeXt-Large (frozen)	53.8	65.7	44.5	49.8	56.4	50.5	27.9	74.3	58.0	~
OMG-Seg	ConvNeXt-XX-Large (frozen)	55.4	65.3	46.5	53.1	60.3	55.2	27.8	76.9	59.3	~

Table 3. Experiment results of OMG-Seg on multiple dataset settings. We use five different datasets for balanced joint co-training for only 12 epochs. We also implement compared baselines in the same codebase.

Methods / Settings	Backbone	COCO-PS	COCO-IS	ADE-PS	VIPSeg-VPS	YT-VIS-19	YT-VIS-21	Params(M)	Share Model
K-Net [97]	ConvNeXt-Large (trained)	50.5	42.3	40.2	-	-	-		-
Mask2Former [18]	ConvNeXt-Large (trained)	53.2	45.2	43.2	-	-	-		-
Mask2Former-VIS [16]	ConvNeXt-Large (trained)	-	-	-	-	45.8	42.3		
single dataset baseline	ConvNeXt-Large (frozen)	52.5	45.6	41.2	42.3	45.3	44.3	1326	-
OMG-Seg	ConvNeXt-Large (frozen)	52.9	44.3	28.2	46.9	48.8	46.2	221	\checkmark
OMG-Seg	ConvNeXt-Large (trained)	55.0	45.3	36.8	45.8	47.2	45.2	221	\checkmark

Table 4.Ablation on joint co-training.(a), COCO-PS.(b),VIPSeg-VPS.(c).YT-VIS-19.

Setting	COCO-PS	VIPSeg-VPS	YT-VIS-19	ADE-OV	YT-VIS-21-OV
а	53.4	32.2	34.2	25.5	30.3
a + b	52.9	49.0	45.2	26.2	39.6
a + b + c	53.0	48.5	56.8	26.1	50.3

Table 5. Ablation on shared decoder design.

Setting	COCO-PS	VIPSeg-VPS	Param	GFlops
shared decoupled image/video	53.0	48.5	221	868
	53.6	46.2	243	868

Panoptic Segmentation

COCO-dataset

Interactive Segmentation

COCO-dataset

Video Instance Segmentation Youtube-VIS-2019-dataset

Video Panpotic Segmentation VIP-Seg-dataset

Open-Vocabulary Video Instance Segmentation Youtube-VIS-2021 dataset

Open-Vocabulary Panoptic Segmentation

ADE-20k dataset

Open-Vocabulary Interactive Segmentation

ImageNet dataset

Video Demo.

Outline

- 1, SAM overview.
- 2, Edge-SAM.
- 3, Open-Vocabulary SAM.
- 4, OMG-Seg.

5, Close Related Works and Summary.

SAM: scale problems on high-resolution segmentation.

BA-SAM: Scalable Bias-Mode Attention Mask for Segment Anything Model

Yiran Song¹*, Qianyu Zhou¹*, Xiangtai Li², Deng-Ping Fan³, Xuequan Lu^{4†}, Lizhuang Ma^{1†} ¹Shanghai Jiao Tong University; ² Nanyang Technological University; ³ Nankai University; ⁴ La Trobe University

¹{songyiran, zhouqianyu, lzma}@sjtu.edu.cn, ²xiangtai94@gmail.com, ³dengpfan@gmail.com ⁴xuequan.lu@deakin.edu.au

CVPR-2024

0.057 0.055 0.065 0.061

2048

4096

1024

0.063 0.057

2048

4096

0.03 0.029

1024

CASS

0.04 ISIC

0.09

VST

0.04 0.03

DUTS

SINet

0.05

0.09

COD10K

0.059

0.053

1024 2048

0.034 0.031

1024

2048

4096

4096

IS-Net

0.07

DIS

Scalable Bias-mode Attention Mask (BA-SAM)

- New Scaling Factor (Left)
- Bias-Mode Attention Mask (Right)

Methods	ds SS		VIS	Interactive	Multi-Task in One Model	Real Time	
ICNet [93]	\checkmark	X	×	×	X	\checkmark	
Bi-Seg [82]	\checkmark	X	X	×	×	\checkmark	
YOSO [25]	\checkmark	\checkmark	X	×	×	\checkmark	
Mobilie-VIS [89]	X	X	\checkmark	×	×	\checkmark	
SAM [34]	X	X	X	\checkmark	×	×	
Mask2Former [10]	\checkmark	\checkmark	×	×	×	×	
Video K-Net [47]	X	\checkmark	\checkmark	×	×	×	
OneFormer [29]	\checkmark	\checkmark	X	×	\checkmark	×	
RAP-SAM (Ours)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

1, New tasks: Real-Time All-Purpose Segmentation.

RAP-SAM:Towards Real-Time All-Purpose

Segment Anything

2, SAM-like model but using a convolution encoder and dynamic convolution decoder.

3, SOTA performance on speed and accuracy trade-off.

Figure 1. The performance of GLEE on a broad range of objectlevel tasks compared with existing models.

Method	Туре	Generic Detection & Segmentation Referring Detection & Segmentation Ope							OpenWorld		~ ~ ~ ~					
		COCO-val		COCO-test-dev		LVIS			RefCOCO		RefCOCO+		RefCOCOg		UVO	
		AP_{box}	AP_{mask}	AP_{box}	AP_{mask}	AP_{box}	AP_{r-box}	$\mathrm{AP}_{\mathrm{mask}}$	$\mathrm{AP}_{\mathrm{r-mask}}$	P@0.5	oIoU	P@0.5	oIoU	P@0.5	oIoU	AR _{mask}
MDETR [42]			-	-	-	-	-	-		87.5	-	81.1	-	83.4	-	-
SeqTR [131]		-	-	-	-	-	-	-	-	87.0	71.7	78.7	63.0	82.7	64.7	-
PolyFormer (L) [62]		-	-	-	-	-	-	-	-	90.4	76.9	85.0	72.2	85.8	71.2	-
ViTDet-L [55]	Consistint	57.6	49.8	-	-	51.2	1.00	46.0	34.3	-	-	-	-	-	-	-
ViTDet-H [55]	Medala	58.7	50.9	-	-	53.4	-	48.1	36.9	-	-	-	-	-	-	-
EVA-02-L [26]	Models	64.2	55.0	64.5	55.8	65.2	-	57.3	-							
ODISE [107]		-	-	-	-	-	-	-	-	-	-	-	-	-	-	57.7
Mask2Former (L) [16]		-	50.1	-	50.5	-	-	-	-	-	-	-	-	-	-	-
MaskDINO (L) [50]		-	54.5	-	54.7	-	-	-	-	-	-	-	-	-	-	-
UniTAB (B) [114]		-	-	-	-	-	-	-	-	88.6	-	81.0	-	84.6	-	14
OFA (L) [94]		-	-	-	-	-	-	-	-	90.1	-	85.8	-	85.9	-	-
Pix2Seq v2 [15]		46.5	38.2	-	-	-	-	121	-	1.1	-	-	12	-	-	
Uni-Perceiver-v2 (B) [51]		58.6	50.6	-	-	-	-	-	-	-	-	-	-	-	-	-
Uni-Perceiver-v2 (L) [51]		61.9	53.6	-	-	-	-	-		-	-	-	-	-	-	-
UNINEXT (R50) [112]	Contraction	51.3	44.9	-	-	36.4	-	-	-	89.7	77.9	79.8	66.2	84.0	70.0	-
UNINEXT (L) [112]	Generalist	58.1	49.6	-	-	-		-		91.4	80.3	83.1	70.0	86.9	73.4	-
UNINEXT (H) [112]	Models	60.6	51.8	-	-	-	-	-	-	92.6	82.2	85.2	72.5	88.7	74.7	-
GLIPv2 (B) [123]		-	-	58.8	45.8	-	-	-	-	-	-	-	-	-	-	-
GLIPv2 (H) [123]		200	-	60.6	48.9	2	1.0	1.2	1	-	-	-	1.0	-	-	2
X-Decoder (B) [134]			45.8	-	45.8	-	-	-	-	-	-	-	-	-	-	-
X-Decoder (L) [134]		-	46.7	-	47.1	-	-	-	-	-	-	-	-	-	-	-
Florence-2 (L) [106]		43.4	-	-	-	-	-	-	-	93.4	-	88.3	-	91.2	-	-
GLEE-Lite	Foundation Models	55.0	48.4	54.7	48.3	44.2	36.7	40.2	33.7	88.5	77.4	78.3	64.8	82.9	68.8	66.6
GLEE-Plus		60.4	53.0	60.6	53.3	52.7	44.5	47.4	40.4	90.6	79.5	81.6	68.3	85.0	70.6	70.6
GLEE-Pro		62.0	54.2	62.3	54.5	55.7	49.2	49.9	44.3	91.0	80.0	82.6	69.6	86.4	72.9	72.6

Table 1. Comparison of GLEE to recent specialist and generalist models on object-level image tasks. For REC and RES tasks, we report Precision@0.5 and overall IoU (oIoU). For open-world instance segmentation task, we reported the average recall of 100 mask proposals (AR@100) on the UVO [96].

General Object Foundation Model for Images and Videos at Scale

Junfeng Wu^{1*}, Yi Jiang^{2*}, Qihao Liu³, Zehuan Yuan², Xiang Bai^{1†}, Song Bai^{2†} ¹Huazhong University of Science and Technology, ²ByteDance Inc., ³Johns Hopkins University

1, Unify the all object centered datasets and tasks in one training format.

2, Train one transformer model on such format.

3, SOTA performance.

Figure 1. Illustration of different video segmentation (VS) tasks. Category-specified VS includes VIS, VSS and VPS tasks, while promptspecified VS consists of VOS, RefVOS and PVOS tasks. Please find more video demos on our project page https://sites.google. com/view/unified-video-seg-univs.

UniVS: Unified and Universal Video Segmentation with Prompts as Queries

Minghan Li^{1,2}*, Shuai Li^{1,2}*, Xindong Zhang² and Lei Zhang^{1,2†} ¹The Hong Kong Polytechnic University ²OPPO Research Institute

liminghan0330@gmail.com, xindongzhang@foxmail.com, {csshuaili, cslzhang}@comp.polyu.edu.hk

Figure 4. Inference process of our UniVS on prompt-specified and category-specified video segmentation tasks, respectively.

Summary:

- 1, Unified architecture for multiple datasets and tasks is one research trend.
- 2, Efficient modeling for SAM need specific designs.
- 3, Knowledge transfer and combination of foundation models are important for downstream application.

Future Work Direction:

- 1, Scale up model training with SAM-1B datasets.
- 2, Unify generation model and segmentation model.
- 3, Combining SAM-Like model with LLMs.

Our code and models are available to the community.

Welcome to start and use it. We also support Hugging Face Models

Acknowledgement for co-authors:

Haobo Yuan, Chong Zhou, Yiran Song, Shilin Xu, Qianyu Zhou, Wei Li, Yining Li, Henghui Ding, Chen Change Loy