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Abstract. Motion is an important clue for segmentation. In this paper,
we leverage motion information densely represented by optical flow to
assist the semantic segmentation task. Specifically, our framework takes
both image and optical flow as input, where image goes through a state-
of-the-art deep network and optical flow goes through a relatively shal-
low network, and results from both paths are fused together in a residual
manner. Unlike image, optical flow is weakly related to semantics but can
separate different objects according motion consistency, which motivates
us to use relatively shallow network to process optical flow to avoid over-
fitting and keep spatial information. In our experiment on Cityscapes,
we find that optical flow improves image-based segmentation on object
boundaries especially on small thin objects. Aided by motion, we achieve
comparable results with state-of-the-art methods.
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1 Introduction

Semantic segmentation is a fundamental task in computer vision, which aims
to predict a semantic category for each pixel in an image. Such comprehen-
sive image understanding is valuable for many vision-based applications such as
autonomous driving, remote sensing, human-computer interaction and virtual
reality.

In the deep learning era, semantic segmentation has made steady progress
after the introduction of Fully Convolutional Networks (FCNs) [24]. However,
most existing methods only take a static image as input and ignore the rich
motion information in image sequences.

Motion is an important clue for segmentation task and can separate differ-
ent objects apart based their different motion patterns, which is complemen-
tary to static patterns in an image. Motivated by this, we propose to add one
path network named Flow2Seg by taking optical flow as input, in addition to
the image path modeled by a state-of-the-art network. Fig 1 presents our basic
idea. We use flownet [14] to extract optical flow between video frames and use
FCN [24] to learn semantic segmentation map directly from optical flow. Con-
sidering optical flow is weakly related to semantics and contains lots of noises,
we use relatively shallow network to process optical flow to avoid overfitting and
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keep spatial information, the design is also empirically verified through ablation
study. On the widely used semantic segmentation benchmark Cityscapes [6],
Flow2Seg improves the image-based baseline significantly and achieves compa-
rable performance with state-of-the-arts methods. Notably, Flow2Seg improves
segmentation of object boundaries, which is crucial for real-world tasks which
require to know precise object boundary.

In summary, we propose to use motion information for semantic segmentation
task via specifically design network. By combining the new designed motion
path with the single frame path modeled by a state-of-the-method segmentation
network, we achieve better performance. To the best of our knowledge, we are
the first to use network to learn semantic segmentation map directly from optical
flow input. Our main contribution can be listed in two points:

1. We propose a novel and light module Flow2Seg for directly mapping optical
flow into segmentation map. Combined with the image segmentation model, we
achieve considerable improvement compared with the PSP-net [42] baseline on
Cityscapes dataset [6]. When training with coarse data, our method achieves
81.4% mIoU which is the top performance compared with other video semantic
segmentation methods.

2. We explore the usage of FCNs for learning semantic segmentation map
directly from optical flow. Optical flow itself contains little appearance infor-
mation and we show shallow network can learn better segmentation result than
deep models. In addition, we try different optical flow prediction methods, and
find that optical flow predicted FlowNet2 [14] contains more detailed information
and achieves better results than others.

FlowNet
FCN

Groud TruthInput

Fig. 1. Overview of the Flow2Seg path. Two consecutive frames are used to estimate
the optical flow, then the optical flow is fed into a FCN for semantic segmentation.

2 Related Work

In this section, we briefly review recent works for advancing semantic segmenta-
tion from three directions, i.e., context modeling, multi-level feature fusion and
using temporal information.
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Context Modeing: Contextual information is modeled to gather information
from a larger receptive field. ParseNet [23] utilizes global pooling to encode con-
textual information, and PSPNet [42] uses spatial pyramid pooling to aggregate
multi-scale contextual information. Deeplab series [2–4] develop atrous spatial
pyramid pooling (ASPP) to capture multi-scale contextual information by di-
lated convolutional layers with different dilation rates. Instead of parallel aggre-
gation as PSPNet and Deeplab, Yang et al. [36] and Bilinski et al. [1] follow the
idea of dense connection [13] to encode contextual information in a dense way.
In [27], factorized large filters are directly used to increase the receptive field size
for context modeling. In PSANet [43], contextual information is collected from
all positions according to the similarities defined in a projected feature space.

Multi-level feature fusion: In addition to contextual information, high-resolution
features are also important for high-resolution prediction demanded in semantic
segmentation. Accordingly, multi-level feature fusion becomes a common way
to use both high-level/low-resolution and low-level/high-resolution features. U-
Net [28] adds skip connections between the encoder and decoder to reuse low level
features, [41] improves U-Net by fusing high-level features into low-level features.
DeepLabV3+ [5] improves the decoder of the previous version by combing low-
level features. In [21], Conv-LSTM [34] is proposed to fuse features between lay-
ers bidirectionally. Some works fuse different modalities for better performance.
PAD-Net [35] is proposed to use gates to fuse multi-modal features trained from
multiple auxiliary tasks. Le et at. [19] combines optical flow and surface normals
to learn joint multimodal features. Different from their approach, our method
uses label map to supervise the optical flow learning process and fuse into the
image path in a residual way.

Using temporal information: Sequential frames contain more information
than a signal frame, thus temporal modeling is also a promising direction. Fayyaz
et al. [9] apply a spatial-temporal LSTM on per-frame CNN features. Nilsson
et al.[25] proposed spatio-temporal transformer gated recurrent units (STGRU)
to propagate semantic labels bidirectionally towards center frame using optical
flow. Jin et al. [16] proposed to learn discriminative features by predicting future
frames and combine both the predicted results and current features to parse a
frame. Gadde et al. [11] proposed to combine the features wrapped from pre-
vious frames with flows and those from the current frames to predict the final
results. However, all these methods model temporal motion in an implicit way.
For example, Netwarp [11] and STGRU [25] use optical flow to warp features
for temporal consistency. One drawback of those method is that they use optical
flow to warp feature from previous or future frames and if we suppose the opti-
cal flow is accurate, the warped feature is directly matched with current feature
and no extra information is added. Our methods focus on learning segmentation
maps directly from the raw optical flow inputs and bring motion information as
extra guidance.
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3 Proposed Method

In this section, we describe our proposed framework in detail. The overall net-
work architecture is shown in Fig 2, which consists of three parts: two indepen-
dent fully convolutional networks with RGB image and optical flow as input
respectively, and one fusion module to learn a joint representation for final seg-
mentation output, the whole network is trained end-to-end with one final loss
together with several auxiliary losses.
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Fig. 2. (a) Network Architecture. It contains three different parts: Image2Seg Module,
Flow2Seg Module and Residual Fusion Module. (b) Residual Fusion Module. C denotes
the number of categories. Best view it in color.

3.1 Flow2Seg Module

Learning semantic information from optical flow using deep network is first pro-
posed in using a two-stream network [30]. However, unlike video action recog-
nition tasks, pixel-level semantic understanding task needs labeling each pixel
rather than only one label for the whole image or optical flow. Thus we adopt
fully convolutional network [24] as the feature extractor for the motion stream.
In our work, we use off-the-shelf methods for optical flow estimation. In our ab-
lation studies, we found FlowNet2 [14] is more suitable for our task since it can
generate sharp object boundaries and generalize well for both small and large
motions. Unlike very deep networks those used to extract features for image,
relatively shallow ResNet18 is used to process optical flow. To take two channels
of optical flow as input for a ImageNet [29] pre-trained ResNet18, we average the
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weights of the first convolutional layer along the channel dimension to initialize
two-channel input ResNet18. In addition, dilated convolution with dilation rate
2 and 4 are used in stage4 and stage5 to increase the receptive field size while
keeping the spatial resolution. The output stride of this network is 8.

Like context modeling for image segmentation, three different context mod-
eling modules are tried after the backbone, including ASPP [4], DenseASPP[36]
and pyramid pooling [42], but without observed performance improvement in
Flow2Seg. This can be explained that optical flow contains weak semantics and
contextual information is not helpful as on image, which is also the reason to
choose a relatively shallow network as the backbone. The output of Flow2seg
module is a segmentation map with C channels, where C represents the num-
bers of categories.

3.2 Image2Seg Module

Image2Seg Module maps the input RGB image to semantic segmentation map.
Image2Seg module can be any existing FCN architectures [24]. We choose the
previous state-of-the-art model PSPNet[42] as our Image2Seg Module. In partic-
ular, we use the pretrained ResNet101 [12] with the same dilated strategy as our
backbone to extract the feature map. The final feature map size is 1/8 of the in-
put image resolution. On top of the feature map, pyramid pooling module [42] is
utilized to incorporate contextual information of multiple levels. Following [42],
four average pooling operations with sizes of 1× 1, 2× 2, 3× 3, 6× 6 are applied
which are represented by different colors in the blue box of Fig 2. Those context
features are upsampled to keep the same size with the original feature map by
bilinear interpolation, which are further concatenated with the original feature.
Then, 1 × 1 convolution is employed to reduce the feature dimension and fuse
the multi-scale context information. Finally, 1 × 1 convolution is performed on
the fused feature map to predict the pixel-level segmentation map. With the
same setting as PSPNet [42], auxiliary loss is added after the fourth stage to
ease optimization.

3.3 Residual Fusion Module

Both Flow2Seg and Image2Seg generate two semantic maps with C channels in
Fig 2 based on two different input modalities, where one is dynamic and the
other is static. Though Flow2Seg and Image2Seg are complementary, simply
fusing by adding or concatenating their outputs cannot obtain better results
since Flow2Seg performs much worse results than Image2Seg. To dig out the
useful part in Flow2Seg while discards the useless part, we design a lightweight
residual fusion module as illustrated in Fig 2. Both output maps from Flow2Seg
and Image2Seg are concatenated together followed by two blocks consisting of
convolution and batch normalization [15], and a residual fused semantic map
is generated with 1 × 1 convolution, which is further added to the semantic
map generated by Image2Seg for final segmentation. The residual fusion module
can refine the weakness part in Image2Seg and leave the well segmented part
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unaffected. The output of residual fusion module with fused segmentation maps
is the final results of our system.

3.4 Loss Function

As illustrated in Fig 2, the whole network is learned in an end-to-end manner
driven by four loss functions defined on four predictions inside the network. In
summary, the total loss is defined as:

L = LImage2Seg + LFusion + α ∗ LFlow2Seg + β ∗ LAux (1)

where LImage2Seg represents the cross entropy loss between image input results
and the ground truth, LFlow2Seg denotes the cross entropy loss between optical
flow input results and the ground truth, LAux denotes the auxiliary loss which
are used for easy optimization [42, 43] and Lfusion denotes the cross entropy loss
between final fusion results and the ground truth, we set α = 0.2 and β = 0.4
respectively in our experiment.

4 EXPERIMENTS

4.1 Datasets

We evaluate the proposed method on Cityscapes [6] which is a standard bench-
mark for semantic urban scene understanding. It contains 5000 fine pixel-level
annotated images, which are divided into 2975, 500, and 1525 images for training,
validation and testing, respectively. It also provides 20000 coarsely annotated im-
ages. Each finely annotated frame is sampled from the 20th frame of a 30-frame
video clip in the dataset, giving in total 180K frames. The previous frame(19th
frame) of these images are used for optical flow calculation in our experiment.
30 classes are annotated and 19 of them are used for pixel-level semantic label-
ing task. Images are high resolution with the same size of 1024×2048. Standard
performance metric means Intersection over Union (mIoU) is used for evaluation
on both validation set and test set, where labels of test set are not given and
predicted results are submitted to server for evaluation.

4.2 Implementation details

Our implementation is based on PyTorch [26], and uses ResNet series as the
backbone. In particular, we use ResNet101 as the backbone of Image2Seg and
ResNet18 as the backbone of Flow2Seg. We set weight decay to 1e-4, and use
Adam [18] as optimizer. We adopt the “poly” learning rate scheduling policy,
where initial learning rate is set to 2e-5 and decayed by (1 − epoch

max epoch )power

with power = 0.9. Synchronized batch normalization[39]is used for better mean
and variance estimation due the limited number of images can be hosted in each
GPU. We choose crop size of 832×832 for image input and 1024×1024 for optical
flow input. We employ about 100K training iterations with mini-batch size of 8.
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Method mIoU(%)

FlowNetS 35.6

FlowNet2 39.6

PWC 36.3

GF-flow 25.4
Table 1. Ablation study with different optical flow inputs, architecture is FCN with
ResNet18.

As a common practice to avoid overfitting, data augmentation including random
horizontal flipping, random cropping, random color jittering within the range of
[−10, 10], and random scaling in the range of [0.5, 2] are used during training
and we do these operations for both image and optical flow input. Note for final
result submission, we first train the Flow2Seg and Image2Seg independently,
then jointly finetune the trained models together with fusion module.

4.3 Experiments on Cityscapes

In this set of experiments except the last experiment, only the 2975 fine anno-
tated images with corresponding optical flows are used for training, and evalua-
tion results on the validation set are reported using single scale prediction. The
optical flow is calculated between the current frame and the previous frame. For
the last experiment, we also use coarse data to boost our model as well as for
fair comparison with other video semantic segmentation methods.

Ablation study on input optical flow We first explore four different methods
for optical flow estimation: FlowNetS [10], FlowNet2 [14], PWC [31], and GF-
flow [8]. Note that the first three are generated by a trained network. The result
is reported in Table 1, FlowNet2 is slightly better than others because it contains
more detailed information on object boundaries and more consistent motion on
both large and small objects.

Ablation study on architecture of Flow2Seg Module We also explore the
different network architectures for Flow2Seg and report the results in Table 2.
We first choose different backbone networks from ResNet series, and find that
increasing the depth of network decreases the performance. Then we also add
context modeling module [42, 4, 36] on the top of ResNet18, and find no per-
formance improvement, which demonstrates that optical flow contains limited
semantics and without requiring deep and large contextual modeling.

Comparison with PSPNet baseline We re-implement PSPNet on Cityscapes
and achieve similar performance with mIoU of 77.8% which are used as our strong
baseline model. We use weights of PSPNet to initialize our Image2Seg module.
Then we add our Flow2Seg module together with residual fusion module and
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Method mIoU(%)

ResNet18-FCN 39.6

ResNet50-FCN 37.4

ResNet101-FCN 35.4

ResNet18 + ASPP 39.4

ResNet18 + DenseASPP 39.3

ResNet18 + PSP 38.2
Table 2. Ablation study architecture of Flow2Seg Module. Optical flow is generated
from FlowNet2. First three rows use different network backbone while last three rows
use different context modeling methods.

Method mIoU(%)

ResNet101-FCN 75.3

ResNet101 + PSP 77.8

ResNet101 + PSP + Flow2Seg 79.7(1.9 ↑)
Table 3. Comparison experiments with baseline on Cityscapes validation set

we train three components together. Finally we get a significant improvement of
1.9% with mIoU of 79.7%, Table 3 summarizes the results. Fig 3 visually com-
pares the segmentation results of PSPNet and our method. We observed that
our method improves the object boundaries especially small and thin objects
mostly. For example, in the second row of Fig 3, our method can find missing
pole in the scene shown in yellow boxes and in the third and fourth rows of Fig 3,
our method can handle in-consistent of moving car shown in yellow boxes.

Comparison with state-of-the-art image semantic segmentation meth-
ods We first show the comparison between our proposed method and current
state-of-the-art image semantic segmentation methods (illustrated in Table 4).
Firstly, we train our method only using the train-fine dataset, and achieve bet-
ter performance than PSPNet [42] and PSANet [43] on the test set. We improve
baseline PSPNet [42] by around 1% point. Secondly, we further fine-tune the
model with both train-fine and val-fine datasets and get a better performance.
Following the same setting as [42], multi-scale sliding-window crop test is used
for fair comparison. Detailed per-class results on test set are reported in Ta-
ble 5. In particular, our method gets superior performance in small objects like
”pole”,”traffic light” and ”traffic sign” shown in Table 5 which is consistent with
our observation in Fig 3.

Comparison with other video semantic segmentation methods We fur-
ther compare our method with other video semantic segmentation methods. For
fair comparison, we also use coarse data to boost our model accuracy. We start
with a trained model on fine dataset and then we use both coarse and fine data
to train Image2Seg model for 20 epoch and we fix Flow2Seg path during the
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a) Image b) PSPNet c) Ours d) Ground truth

Fig. 3. Comparison of segmentation results of PSPNet and our results on Cityscapes
validation set. Our method refines small objects on boarder and generate more consis-
tent results inside objects. Best viewed in color.

Method Backbone mIoU(%)

PSPNet [42]† ResNet101 78.4
PSANet [43]† ResNet101 78.6
Ours † ResNet101 79.4

RefineNet [22]‡ ResNet101 73.6
SAC [40]‡ ResNet101 78.1
DUC-HDC [32]‡ ResNet101 77.6
AAF [17]‡ ResNet101 79.1
BiSeNet [37]‡ ResNet101 78.9
PSANet [43]‡ ResNet101 80.1
DFN [38]‡ ResNet101 79.3
DSSPN [20]‡ ResNet101 77.8

Ours‡ ResNet101 80.4
Table 4. State-of-the-art comparison experiments on Cityscapes test set. †means train-
ing with only the train-fine dataset. ‡means training with both the train-fine and val-
fine datasets. Note that our methods also use optical flow extracted from the previous
frame.

training and then we finetune our model on fine dataset jointly for another 15
epoch. Also, we use multi-scale inference when submitting to the test server. Fi-
nally, we achieve 81.4 %mIoU which is the state-of-the art result compared with
other video semantic segmentation methods. The results are shown in table 6.
Our method performs better than those [11] [16] using flow to warp features
which indicates effectiveness of direct motion information.
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Method road swalk build. wall fence pole tlight sign veg. terrain sky person rider car truck bus train mbike bike mIoU
FCN [24] 97.4 78.4 89.2 34.9 44.2 47.4 60.1 65.0 91.4 69.3 93.9 77.1 51.4 92.6 35.3 48.6 46.5 51.6 66.8 65.3
DeepLabv2 [3] 97.9 81.3 90.3 48.8 47.4 49.6 57.9 67.3 91.9 69.4 94.2 79.8 59.8 93.7 56.5 67.5 57.5 57.7 68.8 70.4
RefineNet [22] 98.2 83.3 91.3 47.8 50.4 56.1 66.9 71.3 92.3 70.3 94.8 80.9 63.3 94.5 64.6 76.1 64.3 62.2 69.9 73.6
DSSPN [20] - - - - - - - - - - - - - - - - - - - 77.8
SAC [40] 98.6 86.5 93.1 56.3 59.5 65.1 72.9 78.2 93.5 72.6 95.6 85.9 70.8 95.9 71.2 78.6 66.2 67.7 76.0 78.1
GCN [27] - - - - - - - - - - - - - - - - - - - 76.9
DUC-HDC [32] 98.5 85.5 92.8 58.6 55.5 65.0 73.5 77.8 93.2 72.0 95.2 84.8 68.5 95.4 70.9 78.7 68.7 65.9 73.8 77.6
ResNet38 [33] 98.5 85.7 93.0 55.5 59.1 67.1 74.8 78.7 93.7 72.6 95.5 86.6 69.2 95.7 64.5 78.8 74.1 69.0 76.7 78.4
AAF [17] 98.5 85.6 93.0 53.8 58.9 65.9 75.0 78.4 93.7 72.4 95.6 86.4 70.5 95.9 73.9 82.7 76.9 68.7 76.4 79.1
SegModel [7] 98.6 86.4 92.8 52.4 59.7 59.6 72.5 78.3 93.3 72.8 95.5 85.4 70.1 95.6 75.4 84.1 75.1 68.7 75.0 78.5
DFN [38] - - - - - - - - - - - - - - - - - - - 79.3
BiSeNet [37] - - - - - - - - - - - - - - - - - - - 78.9
PSANet [43] - - - - - - - - - - - - - - - - - - - 80.1
Ours 98.5 85.8 93.3 57.6 63.1 68.7 76.1 80.3 93.6 72.3 95.4 87.0 72.2 96.1 75.4 88.2 77.8 68.8 76.4 80.4

Table 5. Per-category results on Cityscapes test set. Note that all the models are
trained with only fine-data. Our method outperforms existing approaches in 12 out of
19 categories.

More visible results on video sequence To further prove effectiveness and
generality of our method, we show our method results on Cityscapes video clips
in Fig 4. We extract optical flow between each frame pair and take both flows
and images as inputs. Compared with baseline PSPNet, our method can find
missing objects like poles and eliminate ambiguities in the same truck. Since
Flow2Seg is a lightweight module with ResNet18 as the feature extractor, our
method only costs a little extra computation compared with PSPNet but leads
to better performance.

PSPNet 

Ours(Flo2Seg)

PSPNet 

Ours(Flo2Seg)

Fig. 4. More comparison of segmentation results of PSPNet and our results on
Cityscapes video sequences. The first two rows show our method handles missing small
objects on successive frames while the last two rows show our method can remove am-
biguities of the same object. Both are shown in red boxes. Best view in color and zoom
in.
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Method Backbone use optical flow mIoU(%)

Netwarp [11] ResNet101 yes 80.5
STGRU [25] ResNet101 yes 80.2
VSPFL [16] ResNet101 no 79.3

Ours ResNet101 yes 81.4
Table 6. Video semantic segmentation comparison experiments on Cityscapes test set.
All the methods use both coarse and fine data.

5 Conclusion

In this paper, Flow2Seg is proposed to use motion information to improve image
semantic segmentation. By exploring this module with different optical flows
processed by networks with different depths, we achieve comparable results on
Cityscapes benchmark. In particular, we find the motion information provided
by optical flow can enhance segmentation on object boundaries and small things
in the scene. Our method is especially suitable for video semantic segmentation
where both successive optical flows and image frames can be used as inputs.
We will consider adding multi-frame optical flows into our module as the future
work.
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